flexiblefullpage - default
interstitial1 - interstitial
Currently Reading

A Balanced Approach to Roof Ventilation

Advertisement
billboard -
Construction Practices

A Balanced Approach to Roof Ventilation

Creating an equal distribution of intake and exhaust vents can make a big difference in controlling temperature and moisture inside the attic


By By Marcin Pazera and Chris Robinson December 30, 2016
This article first appeared in the January 2017 issue of Pro Remodeler.

Most homeowners never notice the multiple products working together in their roofing system. Collectively, these components help to create a waterproof barrier, defend the home against nature’s elements, and help the house breathe with balanced roof ventilation.

Roof ventilation is often overlooked—particularly when it comes to “balance.” Ventilation allows air exchange to take place between the outdoor environment and the attic. A roof with a balanced ventilation system has an equal distribution of intake and exhaust vents (50 percent near the eaves and 50 percent near the ridge). The balanced approach helps to optimize air exchange between the attic and the outdoors, and allows for effective management of temperature and moisture inside the attic. In cold weather, ventilation helps remove moist air from the attic that has migrated from the occupied living space, reducing the risk of condensation in the attic. By keeping the roof deck closer to the outdoor temperature, ventilation may also reduce the formation of ice dams, which can lead to water leaks at the eaves. In hot weather, ventilation helps exchange hot attic air with cooler outdoor air, contributing to a more comfortable home.

A Free Flow

Most homes employ a passive or static roof ventilation system, facilitating the free flow of air by taking advantage of buoyancy forces and wind-induced pressure. Buoyancy relies on the temperature difference between the attic and the outdoors, as well as the difference in vertical height between the intake and exhaust vents. The greater the temperature differential between the attic and the outside of the house, in conjunction with the height difference between the intake and exhaust vents (which is larger in the case of steeper slope roofs), the greater the buoyancy force driving the hot air upward toward the exhaust vents.

While buoyancy plays a role in ventilation on calm days, wind-induced pressure exerts a greater influence on roof ventilation. Even low wind speeds allow air to flow through roof vents and contribute to the exchange and mixing of air in the attic.

Ultimately, many factors affect ventilation. Variations in wind speed, wind direction, and surrounding topography all affect ventilation rates. Although higher wind speeds tend to increase ventilation rates (see chart, above) rates at a given wind speed may vary by a factor of 10. Ventilation rates are highest when wind direction is perpendicular to intake openings, and rates decrease as wind direction becomes parallel to openings. Local topography, such as the number and proximity of surrounding structures, building height, vegetation, and variance in surrounding elevations, also influence wind speed and direction.

Modeling Ventilation

Predicting the effects of these factors requires sophisticated computer programs, which can serve as useful tools for comparative analysis. For example, we used AtticSim software to simulate temperatures in a Tampa, Fla., attic throughout one week in July. The modeled attic had gabled construction, measured 50 by 27 feet with a 4:12 roof slope, and had R-30 insulation in the ceiling. We evaluated two ventilation schemes: balanced (soffit-to-ridge) and unbalanced (soffit-to-soffit only). For comparison, we also evaluated a sealed attic—one without vents at the soffit or the ridge.

The peaks in the chart above, above, show late-afternoon temperatures in the attic. Analysis indicates that temperatures in the sealed attic without any
ventilation exceeded 140° F. Balanced ventilation between intake and exhaust was more effective in reducing temperature in the attic when compared with the soffit-only approach. In fact, the balanced ventilation reflected a temperature difference of more than 30° F when compared with the soffit-only ventilation approach.

When intake and exhaust are balanced, the benefit of wind-pressure and buoyancy-induced ventilation combine to increase air exchange and reduce attic temperature. The unbalanced approach (soffit-to-soffit only) is more variable and doesn’t lead to the same air-temperature reduction as the balanced approach does. Soffit-only ventilation is less effective than the balanced approach and appears to be affected by changes in wind speed and direction.

For a handbook detailing vented and unvented roof insulation retrofits, go to protradecraft.com/high-performance-handbook.



Add new comment

Plain text

  • No HTML tags allowed.
  • Web page addresses and email addresses turn into links automatically.
  • Lines and paragraphs break automatically.
leaderboard2 - default

Related Stories

6 Must-Knows for Installing Pocket Doors

Save your sanity: Do it right the first time

Crawl Spaces to Basements: Proceed with Caution

Converting a crawl space to other uses can upgrade a home and add significant value, but when done incorrectly, it can also be disastrous 

Webinar: Project and Trade Management Musts—The New American Remodel 2023

Access the webinar here to learn project and trade management lessons from The New American Remodel 2023

How to Attach a Patio Roof to an Existing House

A graceful integration may mean more work but improved functionality and aesthetics 

How To Improve Energy Performance in Existing Attics

There’s more to insulating the attic than attic insulation; there’s venting, air sealing, and misery

Model ReModel 2022: A Case Study in Sustainable, Thoughtful Construction

The eighth annual Model ReModel project features an accessory dwelling unit, designed for aging in place, attached to a 19th-century Victorian

Installing a Curbless Shower

Model ReModel 2022 features an ADA-compliant bathroom. The contractor shares the install process

How to Install PVC Bevel Siding Over Rainscreen

It’s a lot like installing wood bevel siding, except it won’t warp or rot. And it expands and contracts differently and for different reasons

Understanding How PVC Trim Moves

Anybody who’s used PVC in an exterior application knows that it moves seasonally. Just like wood, right? Not exactly

Step-by-Step Install of a High-Performance Cathedral Ceiling

See how Model ReModel 2022 constructed its vaulted ceiling

Advertisement
boombox2 -
Advertisement
halfpage2 -
Advertisement
native1 -

More in Category




Advertisement
native2 -
Advertisement
halfpage1 -
Advertisement
leaderboard1 -